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ABSlRACT 

A model for caiculating the thermal conductivity of simple liquids influenced 
by quantum effects is presented. The model is based on the cell theory of liquids. The 
prediction of the influence of quantum effects on the thermal conductivity, and its 
temperature, pressure, and volume derivaties, is qualitatively correct. CaicuIations 
of the thermal conductivity of liquid ‘He and ‘He are in fair agreement with 

mental measurements. 

I. INI’RODUCTION 

experi- 

The thermal conductivity, q, of simpIe classical liquids, such as A, N,, CH,, 
and CO, generally follows the principle of corresponding states. When lighter species 
are included in the comparison, an increasing deviation from the classical behavior is 
observed in the series Ne, D,, H,, *He and 3He. This deviation from classicai behavior 
has been correlated with increasing qiantum effects in the liquid’. As quantum effects 
become stronger q (in reduced units) decreases and dq!dT changes from negative to 
positive. These changes can be predicted by modifying the ciassica1 ceil modei for the 
thermal conductivity of simple liquids as presented by McLaughlin2+. The resulting 
quantum mechanical cell model contains the original model in the classical limit. 
Section II describes the classical model and Section III outlines the modifications 
required for the quantum mechanical case. Section IV discusses the resulting quantum 
mechanical expression for q and its derivatives while Section V presents the results of 
calculations of q of 3He and 4He, compared with some experimental results. 

II. CLA!%ICAL MODEL 

A model for cakulating the thermal conductivity of simpie cIassica1 liquids 
has been developed by McLaughlin2-4. This model is based on the cell theory of the 

*Work done under the auspices of the U. S. Atomic Energy Commission. Based in part on a PbD. 
thesis by Jerry F. Kerrisk. The University of New Mexico, 1968. 



32 

Iiquid state of Lennard-Jones and Devonshire’_ The structure of the liquid is assumed 

DO be quasi-cryst.alIine, ie., the available voIume is divided into identica1 ceils, at least 

one for each moIecuie, and the cells are Iocated so that their centers form a regular 

Iattiee. Each moIecuIe is confined to its cell by its nearest neighbors, and moves in 
a! spherical potential field of aI1 other molecules, Iocated at the centers of their ceils. 

In the cell theory of Iiquids the partition function, and thus the thermodynamic 

properties, can be evaluated from this picture. McLaughlin assumes this structure for 

a Iiquid and proceeds to deveIop expressions for two proposed mechanisms for the 

transport of heat down a tempel-ature gradient_ 9. vibrational contribution arises from 

the motion (vibration) of moIecuIes within their individual ceIIs, and a convective 

contribution arises from mo!ecules which occasionally jump from their cells into adja- 

cent vacant ceIIs. The total thermal conductivity, q, is the sum of these two contribu- 

tions. 

With the ceIIs located on a face-centered cubic (fee) lattice, the vibrational con- 

tribution to the thermal conductivity, q,., is given by 

where r is the frequency of vibration of the molecule in its cell, C, is the heat capacity 

of the vibrating molecule, f is the fraction of vacant cells in the lattice, and a is the 
rvzarest neighbor separation, given by 

(1) 

with r the moIar volume, and X Avogadro’s number. McLaughlin assumed that 

,fe I, and that C, was the heat capacity of a three dimensional harmonic oscillator 
in rhe classical limit, 

C,=3k, (2) 

where k is Bohzmann’s constant_ The frequency, v, is a function of the potential 

experienced by a mole&e in its cell. McLaughlin assumed that v could be calculated 

by expanding the potentia1 in powers of r, the distance of a moiecule from its equili- 

brium position in the cell, and keeping only the term in r’( the harmonic approxima- 

tion). The Lennard-Jones 6-12 potentiai function, 

Q(f? = 4E[(s/r')*2 - (G/r’j6] 

was one form taken as the intermolecular potential, and summed over the first three 

shells of neighbors of a fee lattice to obtain the potential experienced by a molecuie 

in its cells_ In Eqn. (3), r’ is the intermolecuktr distance of a pair of moIecuIes, and 

E and c are a characteristic ener_gy and distance. This resu!ts in 

1 
v= 

[ 

24&f L 1ci + --- 
2rr(m)’ y&9* U*t 11 (4) 
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where m is the molecular mass, L and LW are constants associated with the fee lattice 

(L = 22.1 I and M = 10.56), and zi* = C/XC?. It should be pointed out that Eqn. (1) is 

only one of many expressions for v that could be obtained depending on the form of 

the intermolecular potential function_ In general, however, if the potential is a func- 
tion only of the intermolecular spacing, v will be a function of vclume and not temper- 
ature, under the assumptions outlined here. 

The convective contribution to the thermai conductivity, q. is given by 

qc = J&C. :1-f ;:a 

where o is th: frequent_, at which molecules jump into adjacent vacant cells. From 

rate theory cc) was calculated as 

where cf is the free volume of the liquid, E is the height of the potential barrier be- 

tween c-ells, and T is the absolute temperature. McLaughlin estimated E and f from 
experimental values of q for argon at its normal boiling point, and showed that 

&qV< IO-‘. In subsequent discussions qC was neglected and f was assumed negligible 

compared to I, giving P,J = t/TvCV/a, or using Eqns. (1) and (2), 

q = 2, v/v”3 

with 2, = (2 hi)‘13 3 k as a constant. 

(5) 

The expression for the thermal conductivity developed here follows the principle 

of corresponding states. If Eqn. (5) is placed in reduced units, 

q* = 3(2) If3 v*lj'13 (6) 

where II* = (m11’tz2jk E’*‘) q, and Y* = (cm x12/~“2) V. Using Eqn. (4) for 11 results in 
77*=(3 312 2213jrlc *5'3)[(L,k*2)-M]1'2. A s was evident from Eqns. (4) and (5), the 
thermal conductivity is a function of volume only. 

Using Eqn. (6) for the total thermal conductivity, the derivatives of )I* can be 

calculated as 

@l*k=% = a*tl*t-3-71 (7) 

m*w*h = B~E~.+YI (8) 

(atpjav*jT = (~*)-3p~-_3-~~ (3 

and 

(zq*/aP), = 0 (10) 

where a* = (v*)-l(tW/iW*),, 8; = -(v*)-’ (&*/dP*)T, ‘J = -(d In v*/d In v*), P* = 
(c?/c)P, and T* = (k[.s)T. 
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The quantity y as defined here is analogous to Griineisen’s constant for solids. If 

Eqn. (4) is used to reIate P and G, then 

(11) 

From Eqn- (I I), 7 is positive and ranges from about I to 5 in the range oft* appro- 

priate to liquids. These vaIuw are in line with the anaIogy to Griineisen’s constant. 

Since z*, /3: and ‘/ are all positive quantities the model predicts that (Zq*jdP)PcO, 
(Zq*fZP*)T>O, and (2~*/&*)~ t0 for c!assicaI liquids. This is generally experimentahy 

observed. Eqn. (IO) does not hoId exactly for real classical liquids but (Sq*/U*),. is 

generally found to be smah compared to the other derivative@. 

A number of the assumptions that have gone into the classical model are no 

longer valid for Iiquids influenced by quantum effects. The two most significant changes 

involve new expressions for C, and V. For the classical model, the assumption was 

made that each moIecuIe acted as a three dimensional harmonic oscillator to calculate 

C,. Maintaining this general assumption, a quantum mechanical expression for C, 

would use either the Debye or Einstein model to caIcuIatc C, of a coIIection of harmo- 

nic oscihators influenced by quantum efhzcts. The Einstein model was chosen here 

since it corresponds to the independent particle nature of the cc11 model. The resulting 

expression for the heat capacity is’ C, = 3 k g (T/O), where 

The quantity 0 is a characteristic temperature tailed the Einstein temperature, and 
is reIated to the osciIIator frequency, Ye, by 0 = hr,rX-. 

For 4he model to be useful for calculations, 0 must be known. In the Einstein 

model of a three dimensional crystal, 0 is related to the zero point energy, ,?Y&, of the 

independently osciilating particles by 

E,, = (3/2)k 0 (12) 

Since the mode! of the liquid state used here consists of independentIy osciIIating 

particles confined to specific ceIIs, the same relation may be assumed. Now LeveIt and 

Hurst have outlined the caIcuIation of the zero point energy (as well as the higher 

energy levels) of a moIccuIe in a ceil. They used the results of the energy IeveI caIcuIa- 

tions in their quantum mechanical cell model of liquids’ (a quantum mechanical 

version of the Lennard-Jones and Devonshire cell theory) and for the estimation of 
zero point properties of crystaIsg. The zero point ener=y is obtained by numericzd 

solution of the Schradinger equation. Although many solutions of the Schriidinger 

‘equation have been obtained for simple potentiaIs, such as a molecule confined to a 
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cubical or sphericaJ cell, LeveJt and Hurst have succeeded in using the same potential 
as the classicai cell theory, i.e., the Lennard-Jones 6-12 intermoiecular potentiaJ 
summed over a fee lattice, to obtain the potential experienced by a molecule in its ceJJ. 
A general result of the calculation is that E& and thus 8, are functions of volume 
only. Specific calculations of 8 for 3He and 4He, and the relationship between 0 and v, 
wili be discussed in Section V. For the present it is sufficient to know that 8 can be 
calculated and that it is a function of v only. 

The second change required when quantum effects are impofrant is in the calcu- 
Jation of the vibrational frequency of the molecule in its cell. The harmonic approxi- 
mation is no longer valid”. The relatively large motion of the molecules about their _ 
equilibrium location (especially for 4He and 3He) due to the high zero point energy 
makes the harmonic approximation very poor. In fact, imaginary frequencies are 
obtained if this approximation is used with heJiumg. Since the molecule in its cell 
was considered as an oscillator for calculating C,, a simiIar assumption will be made 
here. The vibrationaJ frequency, v, of the moJecuJe in its cell will be equated to the 
oscillator frequency obtained from the Einstein model, Y = vc = kl?/h = (2]3)E,/h. 

The two changes just discussed are sufficient to calculate the thermal conductivi- 
ty if, following McLaughlin, the fraction of vacant cells,f, is assumed to be negligible 
compared to one, and the contribution of the convective mechanism is also assumed 
to be negligible. Any estimation of the fraction of vacant cells is a difficult problem. 
Two limiting approaches can be discussed. The use of the moJar vohrme of the Iiquid 
for the caIcuIation of the lattice spacing [Eqn. (l)] inherentIy assumes that the cell 
volume expands as the molar volume increases. The increase in the molar volume is 
thus assumed to be mainly due to an increase in cell volume, and not to an increase 
in the number of vacant cells. The value offwould remain very small in this case. The 
other extreme assumes that the cell volume remains constant at its value in the solid 
at melting as the molar volume increases. The increase in molar volume is accounted 
for by an increase in the number of vacant cells. In this second case the fraction of 
vacant cells is given by” 

f= 1 -(&/G) (13) 

where v, is the molar volume of the sohd at mehing. The lattice spacing is then calcul- 
ated using v, instead of t’. It was decided here to follow the assumption that the 
increase in molar volume is associated with an increase in cell volume, and that 
(1 -fly 1. This assumption relates the model to the original cell theory where the 
presence of hoJes in the lattice was neglected. 

The contribution from the convective mechanism cannot be calcuIated without 
an accurate estimate off, since qc is proportional tof. An upper limit estimate ofI; 
in the sense of the model adopted here, is available in Eqn. (I3), and ranges from 0.05 
to 0.4. To complete the calculation of qc estimates of E and cf are needed. The height 
of the potential barrier between cells was estimated as E = U,- E. = U, - (3/2)k 6 

where U. is the lattice energy’ ‘, U, = 12c [( 1.2045/t-* ‘) - (0.5055/~*~)]. The frequency, 
o, was calculated as in the classical case. An estimate of the probability of tunnclling 
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through the barrier indicates that tunnelhng should not contribute significantly to the 
frequency of moiecules escaping from their cek The free volume was estimated from 
an approximate relation” kr = (~~~~~;!~N)[G~‘~-((NG~)“~J~, since values of the 
integrals required for a more exact calcuiation were not avaikble at the Iow reduced 
temperatures encountered in this work_ Using these estimates off, E, and rf, we find 
r;rJ?],< io- I. 

Since the estimate off may be orders of magnitude larger than the value 
appropriate to these calculations t 3 , the assumption that q, is negligible seems justified_ 
It should be pointed out that if caIcuIations are catried through using Eqn. (13) to 
dtfinef, the values of q obtained (q, + q,_) are oniy a very weak function off, since asf 
increases from zero the contribution from qC increases but the contribution from qV 
decreases a similar amount. 

The resuhing expression for the total thermal conductivity is 

(14) 

where 2 = (2 i”J) ‘I3 3k2/Ir is a constant_ As with the classical model, Eqn. (14) can be 
placed in reduced units, giving 

q* = 3(9’/3 p g(p/p),p’l3 A* (15) 

where .P = h/c (m E)“~, and o* = kO/&. To reIate the quantum mechanicai model to 

the classicaI mode1 it should be noted that c = 3 g(P/O*), and v* =6*/n*. 

IV. DIUTL’SSION 

Ahhough the thermai conductivity can be calculated directIy from Eqn. (14), it 
is perhaps more instructive to examine the temperature, pressure and volume varia- 
tion of ‘I* as predicted by the quantum mechanica: model, and compared with the 
classical model. The quaiitative influence of quantum efkts on ‘I* can be demon- 
strated in this manner. 

The influence of quantum effects on the magnitude of q* can be seen from a 
comparison of Eqns_ (6) and (15). The main difference is the additional factor g(P/P) 
in the quantum mechanical expression. This function is the well known Einstein spe- 
cific heat function, approaching 1 for T*a O* and approaching 0 exponentially for 
T*eo*. Thus ?J;jrlc’, = g(PJO*), where the subscripts indicate the quantum and 
classical expressions_ At low temperatures (P c P) q* should begin to drop below the 
cIassical vaIues, the deviation increasing with decreasing temperature_ A second phe- 
nomenon shows up here in that the values of 6* appropriate to different substances in- 

crease as quantum effects become important (with increasing value of n*)t4_ Thus, the 
vafues of 8% appropriate to ‘He are larger than those for A or Nt. This increase of 8* 
with increasing A* produces a larger quantum effect on r~* of 3He (A* = 3.08) than 

on q* of 4He (A* = 2.67), even though both liquids exist in a similar temperature 
range. The effects described here have previously been experimentally observed’, and 
czrrclated with the parameter P. 



The derivatives of ‘I* show even more interesting 
Eqn. (15) to define q*, we have 

and 
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quantum effects. Using 

(16) 

(17) 

(18) 

(19) 

where G (T/(j) = dln g(T’u) = 
dIn(T/8) 

G(T*/O*), and y = -(dlnU*/d In r;? in light of the 

reiation between O* and v*_ The function G(x) has the folIowing properties for x>O; 
G(x)>O, limit G(x) = 0, and ‘limit G(x) = i-co. 

x*9 x+0 

0. ’ 
0 

Fig. 1. The function G (Tjf?) as a function of (Tj@- 

Fig. I shows a plot of G (T/O) as a function of (T,O). 
The quantum mechanical expressions for the derivatives wqns. (16)~(I9)] all 

differ from their classiLti counterparts Eqns. (7)-(10)] by terms proportional to 
G(T’0). When (T/o) is Iarge G(T/e) approaches zero, and the quantum mechanical 
expressions approach the classical expressions. As (T,YI) decreases the terms involving 
G(T/O) can make significant contributions to the derivatives. Since G( T/lo) is positive, 
the quantum mechanical contributions to Eqns. (16)-(18) tend to change the sign of 
the derivatives, while for Eqn. (19) the quantum mechanical contribution increases 
the derivative from zero. 
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Experimentally, (Zq*/ZT*), is negative for classicaf liquids but becomes increas- 

ingIy positive’ through the series D,, Hz, 4He, and ‘He. The model presented here 

predicts just this behavior; since the range of Iiquid state temperatures becomes 

Iower through this series of materi&, the range of values of G(T/f?) appropriate to 

each mate&I increases through the series, making (Zq*/aP), increasingly positive. 

ExperimentaIIy, (2q*,‘;P*), is positive for classical liquids, and in most cases, 

63r Iiquids influenced by quantum effects. Eqn. (17) predicts that (ZV*/ZP*)~ shouId 

be positive for cIassica1 liquids, but decreases with increasing quantum effects, finalIy 

becoming negative. McLaughlin has shown that (B~*)-‘(Z~*/dP*)r has a value in 

the order of 22 for ciassical iiquids4, whiIe experimental data for liquid 3He give this 

quantity values from about l/2 to 1 between 1.5 K and 3 Kx6_ At very Iow temper- 

atures, the experimental (2q*/~?P*), of liquid 3He does become negative”. Although the 
qualitative predictions of Eqn_ (17) are folIowed, it will be seen in Section V that caIcu- 

Iations for Iiquid 4He and 3He give negative vahxes of (ZV*/ZP*)~ in a higher temper- 

ature range than they are observed experimentaIIy_ 

The behavior of (Z~*/&T*)~ shouId be very similar to (cY~*/M*)~ since they are 

related by (tq*!dP*)r = @*(tg*/&?),. Thus, the same statements that have been 

made in the preceding paragraph carry through for (+*/&J*)~. 

The quantity (Zq*/C!T+), is not extensively known for liquids. Data taken on 
liquid ammcnia indicate that, within experimental error, iz is zero”‘_ Data on various 

classical high density _~es indicate that it is a small positive quantity6. Experimental 
data on liquid zHe and ‘He show that (Zri+laP), is positive and increases as the 

temperature decreases, in Iine with the prediction of Eqn. (19)16. 

A point about the “anomalous” regions of thermal conductivity of liquid 4He 

and 3He should be made, As the kt&ansition is approached, q of Iiquid 4He goes 

through a minimum and increases sharply. Below the transition, heIium II exhibits 

properties such that the usual definition of thermal conductivity is not valid. At very 

Iow temperatures (be1ow I K) JJ of liquid 3He goes through a minimum and increases 

with decreasing temperature as T-l. Both of these phenomena are reelated to a quan- 

tum statist&I behavior of a collection of bosons (*He) or fermions (3He)_ The model 

presented here ignores the statistics of the molecules, treating them as a collection 

of independent particIes. The value of this treatment lies mainly in the intermediate 

region, where quantum mass effects are becoming important, but before the quantum 

statistics of the moIecuIes begin to influence their behavior. 

In summary, the model of liquid thermal conductivities presented here predicts 

that with increasing quantum effects, changes in the magnitude of q*, and in the 
magn+ude and possibly the sign of its derivatives, should occur. Quantum effects 

were mainIy introduced through a quantum expression for the heat capacity of a 

moIecu!e vibrating in its cell. The expression involves a characteristic temperature, 0. 

Quantum effects are important when the temperature is small compared to 8, and 

are unimportant when the temperature is large compared to 6, The predictions of the 

model are qualitatively in Iine with experimental behavior. 
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V. CALCULA~ONS 

The thermal conductivity of liquid 4He and 3He has been measured16 between 
1.5 K and 4 K, and at pressures up to 34 atm. VaIues of q for both liquids were calcul- 
ated using Eqn. (14), to determine if the model quantatively predicts the correct 

.: *= I x2 i 
i 

3.0. . 

I 
z-o!- 

.I 

I.OL 

0.9; 

09- 
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0.77 

(16: 
! 

o.d- 
i 

a4y 
t 
i 

0.3’ 
I 2 3 4 5 

9 

thermal conductivities. 

Fig, 2 Reduced zero point energy of liquid 3He and ‘He as a function of reduced moku volume. 

The first order of business is the caicuiation of 0, or equivalently, E,, since Eqn. 
(12) relates the two quantities. As stated in Section III, Levelt and Hurst have provided 
a procedure for calculating & by a numerical solution of the SchrGdinger equation 
with a potential obtaind from summing the Lennard-Jones 6-12 intermolecular 
potential over a number of shells of nearest neighbors. They CalcuIated E, of 4He 
for a range of values of u *. In this work, values of & were calculated for Iiquid 
‘He and 4He using the potential obtained from the first ten shells of nearest neigh- 
bors. The values of the parameters in the Lennard-Jones potential were (E/k) = 10.22 
K, and 0 = 2.556 A, resulting in ,4* = 2.677 for *He and A* = 3.084 for 3He. Table I 
contains the values of Ez = &/a obtained in this manner, and Fig. 2 shows a plot 
of Ez as a function of c*. To facilitate the use of the calculated data, vaIues of Ez 
were fitred by a least squares method to the function 

E,* = A(c*)-’ exp (nv*). (20) 

Table II contains the values of the parameters obtained. A function of this form results 
in y = - (d In P/d In u*) being y = I-nv*. 

Since the measurements of q were made as a function of pressure and not volume, 
values of D coresponding to the pressure and temperature of the measured t] were 
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TABLE I 

CALCULXlED ZERO POI?X ENERGY OF 3He AND ‘He 

20 
21 
z-2 
23 
2.4 
25 
26 
27 
2s 
29 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3-S 
3.7 
3.8 
3.9 
4.0 

1.519 
1.373 
I_247 
1.139 
I.045 
0.966 
0.897 
OS39 
O-789 
0.747 
O-71 1 
O&31 
0.656 
0.634 
0.617 
0.602 

2065 2053 
1.793 
I S63 I .5x? 
1.367 
1.199 I.190 
I.055 
0.932 
0.826 
0.734 

Yalues obtzined by Hurst and Lcvelt (Rel9). 

TABLE II 

VALUES OF THE PARAMETERS IN EQUATION (20) 

Paramezer =HC ‘He 

A IS.597 21.098 
1 5.699 1.804 
n I-159 -0.537 

necessary. The density data of Sherman and Edeskuty’8 were used for 3He, and the 
density data of EIwell and Meyer I9 for 4He_ Table III shows a comparison of the 
experimental and calculated values of q for 3He, while Table IV shows the same com- 
parison for jHe_ The values of c used are included_ In neither case is the agreement 
good. At constant pressure the caIculated q generally increases with increasing temper- 
ature, following the experimental behavior_ At constant temperature, the calculated 
q increases with increasing pressure at the higher temperatures, but decreases with 
increasing pressure at the lower temperatures_ Thus, the calculations indicate that 
(ZqjZP), changes from positive to negative as the temperature decreases in this range. 
This is contrary to the experimental behavior which shows a positive (lQ/W)r over the 
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TABLE m 

COMPARISON OF EXPERIMENTAL AND CALCULATED THERMAL 
CONDUCTIVITIES OF LIQUID 3He 

T(K) P (arm) f7 (cc/mole) q X IOv4 (Icaffslcm K) 

I so 4 33.30 1.10 
10 

‘-58 , 
30.27 1.13 0-a 

I6 28.45 1.14 0.38 
22 27.36 1.17 0.31 
28 26.16 1.18 0.22 
34 25.32 1.21 0.16 

2.00 

2.53 

3.00 

4 33.80 I.33 0.86 
10 30.25 1.37 0.85 
I6 28.59 1.44 0.79 
22 27.23 1-H) 0.70 
28 26.23 1.53 0.61 
34 2541 IS7 0.52 

4 34.60 1.53 1.03 
IO 30.84 1.60 l-13 
16 28.80 1.72 1.14 
22 27.42 1.78 1.11 
28 26.36 1.85 1.05 
34 25.51 1.91 0.97 

4 35.85 1.69 1.07 
1G 31.34 1.82 1.27 
16 29.14 1.96 i-36 
22 27.64 2.04 1.38 
28 25.53 210 1.38 
34 2x64 2.18 1.34 

3.50 4 37.94 1.80 1.05 
10 32.07 2.02 1.34 
16 29.56 21s 1.49 
22 27.94 2.24 1.59 
28 26-75 2.33 1.64 
34 25.82 240 1.65 

3.95 4 40.76 1.88 0.98 
10 33.00 210 1.34 
I6 30.08 2.29 1.55 
22 28.34 2.42 1.70 
28 27.05 2.55 1.79 
34 26.07 2.64 1.85 

entire range, although it does decrease with decreasing temperature. The calculated 
values are all below the experimental values. 

Although tie agreement between the calculated and experimental values of q 
is only fair, it should be pointed out that the model has no constants which can be 
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TABLE IV 

COMPARISON OF EXPERIMENTAL AND CALCULATED THERMAL 
CONDUClIVlTlES OF !_IQUID ‘Ke 

T(K) P (am) c (cc/male) q x IO-& (rratZs/cm K) 

Exp. Cak 

242 1 27.15 1.50 1.12 
10 24.81 1.72 I.12 
18 23.54 1.86 1.03 
26 22.63 1.96 0.92 
34 21.97 1.99 0.82 

2-62 1 27.40 1.60 1.17 
10 24.95 1.82 1.24 
18 23.63 1.99 1.19 
26 2269 2.09 1.10 
34 3302 215 1.01 

292 1 27.66 1.68 1.21 
10 25.06 1.96 1.35 
18 23-73 211 1.33 
26 22.77 221 1.27 
34 2209 230 1.19 

3.01 1 27-93 
10 25.19 
18 23.80 
26 22_85 
34 22_18 

1.73 I.22 
203 1.43 
218 1.45 
2.32 1.41 
240 1.35 

3.60 1 29.28 1.89 1.16 
10 25.72 2.26 1.57 
18 24.18 246 1.72 
26 23.12 2.60 1.77 
34 22.37 275 1.77 

3.95 1 30.55 204 1.03 
10 26.13 237 1.59 
18 24.43 261 1.81 
26 23.32 280 1.91 
34 2254 291 1.96 

adjusted to bring the calculations into line with the experimental results. It may be 

possibIe to use 6 as an adjustabIe parameter to correIate the measurements of v of 

liquid %e and 3He_ That procedure was not attempted here, since the purpose of 
this work was to outline the model for liquid thermal conductivities and to compare 

it with existing experimental data. 
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