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ABSTRACT

A model for calculating the thermal conductivity of simple liquids influenced
by quantum effects is presented. The model is based on the cell theory of liquids. The
prediction of the influence of quantum effects on the thermal conductivity, and its
temperature, pressure, and volume derivaties, is qualitatively correct. Calculations
of the thermal conductivity of liquid *He and *He are in fair agreement with experi-
mental measurements.

I. INTRODUCTION

The thermal conductivity, #, of simple classical liquids, such as A, N,, CH,,
and CO, generally follows the principle of corresponding states. When lighter species
are included in the comparison, an increasing deviation from the classical behavior is
observed in the series Ne, D,, H,, *He, and 3He. This deviation from classicai behavior
has been correlated with increasing quantum effects in the liquid®. As quantum effects
become stronger 7 (in reduced units) decreases and dn/dT changes from negative to
positive. These changes can be predicted by modifying the classical cell modei for the
thermal conductivity of simple liquids as presented by McLaughlin®>~*. The resulting
quantum mechanical cell model contains the original model in the classical limit.
Section II describes the classical model and Section III outlines the modifications
required for the quantum mechanical case. Section [V discusses the resulting quantum
mechanical expression for 1 and its derivatives while Section V presents the results of
calculations of n of *He and *He, compared with some experimental results.

0. CLASSICAL MODEL

A model for calculating the thermal conductivity of simple classical liquids
has been developed by McLaughlin?~*. This model is based on the cell theory of the

*Work done under the auspices of the U. S. Atomic Energy Commission. Based in part on a Ph.D.
thesis by Jerry F. Kerrisk, The University of New Mexico, 1968.
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liquid state of Lennard-Jones and Devenshire®. The structure of the liquid is assumed
to be quasi-crystalline, r.e., the available volume is divided into identical cells, at least
one for each molecule, and the cells are located so that their centers form a regular
Iattice. Each molecule is confined to its cell by its nearest neighbors, and moves in
a spherical potential field of all other molecules, located at the centers of their cells.
In the cell theory of liquids the partition function, and thus the thermodynamic
properties, can be evaluated from this picture. McLaughlin assumes this structure for
a liquid and proceeds to develop expressions for two proposed mechanisms for the
transport of heat down a temperature gradient. A vibrational contribution arises from
the motion (vibration) of molecules within their individual cells, and a convective
contribution arises from molecules which occasionally jump from their cells into adja-
cent vacant cells. The total thermal conductivity, 7, is the sum of these two contribu-
tions.

With the cells located on a face—centered cubic (fcc) lattice, the vibrational con-
tribution to the thermal conductivity, n,, is given by

1, =v2vC(1-f}a

where v is the frequency of vibration of the molecule in its cell, C, is the heat capacity
of the vibrating molecule, f is the fraction of vacant cells in the lattice, and a is the
mearest neighbor separation, given by

@ =2 /N, M

with r the molar volume, and N Avogadro’s number. McLaughlin assumed that
[f<1, and that C, was the heat capacity of a three dimensional harmonic oscillator
in the classical limit,

C.=3k, @)

where k£ is Boltzmann’s constant. The frequency, v, is a function of the potential
experienced by a molecule in its cell. McLaughlin assumed that v could be calculated
by expanding the potential in powers of 7, the distance of a molecule from its equili-
brium position in the cell, and keeping only the term in r?( the harmonic approxima-
tion). The Lennard-Jones 6-12 potential function,

$(r) = 42[(5/r)"? — (a/r')°] 3

was one form taken as the intermolecular potential, and summed over the first three
shells of neighbors of a fcc lattice to obtain the potential experienced by a molecule
in its cell®. In Eqn. (3), 7’ is the intermolecular distance of a pair of molecules, and
€ and ¢ are a characteristic energy and distance. This results in
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where m is the molecular mass, L and M are constants associated with the fcc lattice
(L =22.11 and M = 10.56), and v* = v/Nc". It should be pointed out that Eqn. (1) is
only one of many expressions for v that could be obtained depending on the form of
the intermolecular potential function. In general, however, if the potential is a func-
tion only of the intermolecular spacing, v will be a function of velume and not temper-
ature, under the assumptions outlined here.

The convective contribution to the thermai conductivity, 7., is given by

e =+20C.{1-7}/a

where w is th: frequenc_ at which molecules jump into adjacent vacant cells. From
rate theory @ was calculated as

+
© = S(kT[2m) e~ EAT
ok

t
where rz, is the free volume of the liquid, E is the height of the potential barrier be-
tween cells, and T is the absolute temperature. McLaughlin estimated £ and f from
experimental values of 5 for argon at its normal boiling point, and showed that
ne/n,< 10~ % In subsequent d_iscussions n. was neglected and fwas assumed negligible
compared to 1, giving n = ./2vC,/a, or using Eqns. (1) and (2),

n=Zv[o*? (%)

with Z.= (2 N)!/3 3 k as a constant.
The expression for the thermal conductivity developed here follows the principle
of corresponding states. If Eqn. (5) is placed in reduced units,

,’t — 3(2)113 v:t/U*IIS (6)

where 5* = (m'?6%/k £'/?)n, and v* = (cm*'/?[c'/%)v. Using Eqn. (4) for v results in
n* = (3312 2213 (313 [(L]e*?) — M2, As was evident from Egns. (4) and (5), the
thermal conductivity is a function of volume only.

Using Eqn. (6) for the total thermal conductivity, the derivatives of #* can be
calculated as

@n*[eT*)p = o*n*[—3—7] )

@n*[oP¥r = pTn*[3+7] ®)

(Cn*{cv*)r = (*) ' [—1—7] &)
and

(Cn*[6T*),=0 (10)

where a* = (v*) "1 (Cv*[dT*)p, BT = —(*) "' (Cv*{éP*) 1, 7= —(d In v*/d In v*), P* =
(63[e)P, and T* = (k[e)T.



The quantity 7 as defined here is analogous to Grineisen’s constant for solids. If
Eqn. (4) is used to relate v and r, then

. _ [AL36") ~ (4M)3)]
[(L/w*?) — 7]

(11)

From Eqn. (11), 7 is positive and ranges from about 1 to 5 in the range of v* appro-
priate to liquids. These values are in line with the analogy to Griineisen’s constant.
Since «*, BT and y are all positive quantities the model predicts that (€n*/é7T*)p <O,
(€n*[cP*}+>0, and (cn*[ce*); <O for classical liquids. This is generally experimentally
observed. Eqn= (10) does not hold ezacﬂy for real classical liauids but {F',r,n*/@'[*)v 1S
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generally found to be smali compared to the other derivatives®.
1. QUANTUM MECHANICAL MODIFICATIONS

A number of the assumptions that have gone into the classical model aré no
longer valid for liquidsinfluenced by quantum effects. The two most significant changes
involve new expressions for C, and v. For the classical model, the assumption was
made that each molecule acted as a three dimensional harmonic oscillator to calculate
C,. Maintaining this general assumption, 2 quantum mechanical expression for C,
would use either the Debye or Einstein model to calculate C, of a collection of harmo-
nic oscillators influenced by quantum effects. The Einstein model was chosen here
since it corresponds to the independent particle nature of the cell model. The resulting
expression for the heat capacity is’ C, = 3 kg(T/0), where

oy — OTY 7
g(T/0) = (?G’T_——l—)z_'
The quantity 0 is a characteristic temperature called the Einstein temperature, and
is related to the oscillator frequency, vg, by 0 =hv /k.

For the model to be useful for calculations, @ must be known. In the Einstein
model of a three dimensional crystal, 0 is related to the zero point energy, E,, of the
independently oscillating particles by

E,=@Gi2)k 0 (12)

Since the mode! of the liquid state used here consists of independently oscillating
particles confined to specific cells, the same relation may be assumed. Now Levelt and
Hurst have outlined the calculation of the zero point energy (as well as the higher
energy levels) of a molecule in a cell. They used the results of the energy level calcula-
tions in their quantum mechanical cell model of liquids® (a quantum mechanical
version of the Lennard-Jones and Devonshire cell theory) and for the estimation of
zero point properties of crystals®. The zero point energy is obtained by numerical
solution of the Schrédinger equation. Although many solutions of the Schrodinger
equation have been obtained for simple potentials, such as a molecule confined to a
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cubical or spherical cell, Levelt and Hurst have succeeded in using the same potential
as the classical cell theory, i.e., the Lennard-Jones 6-12 intermolecular potential
summed over a fcc lattice, to obtain the potential experienced by a molecule in its cell.
A general result of the calculation is that E,, and thus 8, are functions of volume
only. Specific calculations of 8 for *He and *He, and the relationship between 6 and v,
will be discussed in Section V. For the present it is sufficient to know that 8 can be
calculated and that it is a function of v only.

The second change required when quantum effects are imporiant is in the calcu-
lIation of the vibrational frequency of the molecule in its cell. The harmonic approxi-
mation is no longer valid!?. The relatively large motion of the molecules about their
equilibrium location (especially for “He and *He) due to the high zero point energy
makes the harmonic approximation very poor. In fact, imaginary frequencies are
obtained if this approximation is used with helium®. Since the molecule in its cell
was considered as an oscillator for calculating C, a similar assumption will be made
here. The vibrational frequency, v, of the molecule in its cell will be equated to the
oscillator frequency obtained from the Einstein model, v= vy =k0/h = (2/3)E,/h.

The two changes just discussed are sufficient to calculate the thermal conductivi-
ty if, following McLaughlin, the fraction of vacant cells, f, is assumed to be negligible
compared to one, and the contribution of the convective mechanism is also assumed
to be negligible. Any estimation of the fraction of vacant cells is a difficult problem.
Two limiting approaches can be discussed. The use of the molar volume of the liquid
for the calculation of the lattice spacing [Eqn. (1)] inherently assumes that the cell
volume expands as the molar volume increases. The increase in the molar volume is
thus assumed to be mainly due to an increase in cell volume, and not to an increase
in the number of vacant cells. The value of f would remain very small in this case. The
other extreme assumes that the cell volume remains constant at its value in the solid
at melting as the molar volume increases. The increase in molar volume is accounted
for by an increase in the number of vacant cells. In this second case the fraction of
vacant cells is given by!'?!

S=1-(zfr) (13)

where p, is the molar volume of the solid at melting. The lattice spacing is then calcul-
ated using v, instead of v. It was decided here to follow the assumption that the
increase in molar volume is associated with an increase in cell volume, and that
(1—f)=1. This assumption relates the model to the original cell theory where the
presence of holes in the lattice was neglected.

The contribution from the convective mechanism cannot be calculated without
an accurate estimate of f, since 7, is proportional to f. An upper limit estimate of 7,
in the sense of the model adopted here, is available in Egn. (13), and ranges from 0.05
to 0.4. To complete the calculation of 7, estimates of F and v; are needed. The height
of the potential barrier between cells was estimated as E= Uy— Ey, = Uy —(3/2)k 6
where Uy is the lattice energy ' 2, U, = 12¢ [(1.2045/v*2) — (0.5035/c*%)]. The frequency,
w, was calculated as in the classical case. An estimate of the probability of tunnelling
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through the barrier indicates that tunnelling should not contribute significantly to the
frequency of molecules escaping from their cells. The free volume was estimated from
an approximate relation? ¢ = (4/27/3N)[t'/3 —(No?)'/313, since values of the
integrals required for 2 more exact calculation were not available at the low reduced
temperatures encountered in this work. Using these estimates of f, E, and v, we find
nfn,<i0o™t.

Since the estimate of f may be orders of magnitude larger than the value
zppropriate to these calculations® 3, the assumption that 7, is negligible seems justified.
It should be pointed out that if calculations are cairied through using Eqn. (13) to
define f, the values of n obtained (17, + n.) are only a very weak function of £, since as f
increases from zero the contribution from 7, increases but the contribution from 7,
decreases a similar amount.

The resulting expression for the total thermal conductivity is

n=Z0(T/0)'" (14)

where Z = (2 N)'/3 3k2/h is a constant. As with the classical model, Eqn. (14) can be
placed in reduced units, giving

n* =31 0% o(T*(0%)/c*' 1 A* a1s)

where A* = h/c (m £)*/2, and 0* = k0/e. To relate the quantum mechanical model to
the classical model it should be noted that C* = 3 g(7*/6*), and v* =6%/4*.

1V. DISCUSSION

Although the thermal conductivity can be calculated directly from Eqa. (14), it
is perhaps more instructive to examine the temperature, pressure and volume varia-
tion of 7* as predicted by the quantum mechanical model, and compared with the
classical model. The qualitative influence of quantum effects on #* can be demon-
strated in this manner.

The influence of quantum effects on the magnitude of n* can be seen from a
comparison of Equs. (6) and (13). The main difference is the additional factor g(7*/e*)
in the quantum mechanical expression. This furction is the well known Einstein spe-
cific heat function, approaching 1 for 7*> 6* and approaching 0 exponentially for
T* <6* Thus 71:1"1; = g(7*/0*), where the subscripts indicate the quantum and
classical expressions. At low temperatures (7* < 8*) 5* should begin to drop below the
classical values, the deviation increasing with decreasing temperature. A second phe-
nomenon shows up here in that the values of 6* appropriate to different substances in-
crease as quantum effects become important (with increasing value of A*)'%. Thus, the
values of 6* appropriate to *He are larger than those for A or N,. This increase of §*
with increasing A* produces a larger quantum effect on n* of *He (4* = 3.08) than
on n* of *“He (A* = 2.67), even though both liquids exist in a similar temperature
range. The effects described Lere have previously been experimentally observed!, and
corrclated with the parameter A*.
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The derivatives of n* show even more interesting quantum effects. Using
Eqn. (13) to defire n*, we have

@n*[eT*)p = a*n*[—1/3—y+ G(T/0)(y +(@*T*)~ )] (16)

@n*[eP¥)r = Brn*[1/3+y—yG(Z/0)] a7

(@n*[0v*)r = (*) ™! n*[—1/3—y+7G(T]0)] (13)
and

@n*[eT*), =(T*)~! n* G(T/0) 19
where G(T/0) = ding(T/9) _ G(T*/0%), and y = —(dIn06*/dInv™) in light of the

dIn(T/6)

relation between 0* and v*. The function G(x) has the following properties for x>0;
G(x)>0, limit G(x) =0, and limit G(x) = + 0.

x-*0 x—0

o v i 1 H . 1 ' ' .
[¢] Q.2 04 0.6 0.8 1.0
/8

Fig. 1. The function G(7/0) as a function of (7/6).

Fig. 1 shows a plot of G(7/0) as a function of (7/0).

The quantum mechanical expressions for the derivatives [Eqns. (16)-(19)] all
differ from their classical counterparts [Eqns. (7)-(10)] by terms proportional to
G(T/0). When (770) is large G(7/60) approaches zero, and the quanturmn mechanical
expressions approach the classical expressions. As (7/0) decreases the terms involving
G(T/60) can make significant contributions to the derivatives. Since G(7/0) is positive,
the quantum mechanical contributions to Eqns. (16)~(18) tend to change the sign of

the derivatives, while for Eqn. (19) the quantum mechanical contribution increases
the derivative from zero.
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Experimentally, (cn*/GT*), is negative for classical liquids but becomes increas-
ingly positive! through the series D,, H,, *He, and *He. The model presented here
predicts just this behavior; since the range of liquid state temperatures becomes
lower through this series of materials, the range of values of G(7/6) appropriate to
each material increases through the series, making (¢cn*/07T*);, increasingly positive.

Experimentally, (¢cn*/¢P*)y is positive for classical liquids, and in most cases,
for liquids influenced by quantum effects. Eqn. (17) predicts that (¢n*/6P*); should
be positive for classical liquids, but decreases with increasing quantum effects, finally
becoming negative. McLaughlin has shown that (834*)~ *(6n*/6P*)r has a value in
the order of 2.2 for classical liquids®, while experimental data for liquid >He give this
quantity values from about 1/2 to 1 between 1.5 K and 3 K!5. At very low temper-
atures, the experimental (C*/¢P*) 1 of liquid *He does become negative!®. Although the
qualitative predictions of Eqn. {17) are followed, it will be seen in Section V that calcu-
Iations for liquid *He and *He give negative values of (¢n*/¢P*); in a higher temper-
ature range than they are observed experimentally.

The behavior of (¢n*/Gv*)r should be very similar to (dn*/dP*) since they are
related by (Cn*/GP*); = pFr*(Cn*/cc*)r. Thus, the same statements that have been
made in the preceding paragraph carry through for (¢n*/év*).

The quantity (é7*/8T™*), is not extensively known for liquids. Data taken on
liquid ammcnia indicate that, within experimental error, it is zero'”?. Data on various
classical high density gases indicate that it is a small positive quantity®. Experimental
data on liquid *He and 3He show that (¢7*/0T*), is positive and increases as the
temperature decreases, in line with the prediction of Eqn. (19)*°.

A point about the “anomalous” regions of thermal conductivity of liquid “He
and *He should be made. As the A-transition is approached, n of liquid “He goes
through a minimum and increases sharply. Below the transition, helium I exhibits
properties such that the usual definition of thermal conductivity is not valid. At very
low temperatures (below 1 K) 77 of liquid *He goes through a minimum and increases
with decreasing temperature as 7~ 1. Both of these phenomena are related to a quan-
tum statistical behavior of a collection of bosons (*He) or fermions (*He). The model
presented here ignores the statistics of the molecules, treating them as a collection
of independent particles. The value of this treatment lies mainly in the intermediate
region, where quantum mass effects are becoming important, but before the quantum
statistics of the molecules begin to influence their behavior.

In summary, the model of liquid thermal conductivities presented here predicts
that with increasing quantum effects, changes in the magnitude of n*, and in the
magn‘tude and possibly the sign of its derivatives, should occur. Quantum effects
were mainly introduced through a quantum expression for the heat capacity of a
molecule vibrating in its cell. The expression involves a characteristic temperature, 0.
Quantum effects are important when the temperature is small compared to 8, and
are unimportant when the temperature is large compared to 6. The predictions of the
model are qualitatively in line with experimental behavior.
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V. CALCULATIONS

The thermal conductivity of liquid *He and 3He has been measured!® between
1.5 K and 4 K, and at pressures up to 34 atm. Values of 5 for both liquids were calcul-
ated using Eqn. (14), to determine if the model quantatively predicts the correct
thermal conductivities.

3.0:
2.0~ \ I
4 3,
s He He
i

I_O!— —

0.9;-

05’“ I

07;" R

o6 |
!

0_5‘._ -
i

as— -
!
f

o3 :
1 2 3 4 5 Ha]

Fig. 2. Reduced zero point energy of liquid 3He and “He as a function of reduced molar volume.

The first order of business is the calculation of 8, or equivalently, E,, since Eqgn.
(12) relates the two quantities. As stated in Section II1, Levelt and Hurst have provided
a procedure for calculating E, by a numerical solution of the Schrédinger equation
with a potential obtained from summing the Lennard—Jones 6-12 intermolecular
potential over a number of shells of nearest neighbors. They calculated E, of “He
for a range of values of v*. In this work, values of E, were calculated for liquid
3He and “He using the potential obtained from the first ten shells of nearest neigh-
bors. The values of the parameters in the Lennard-Jones potential were (g/k) = 10.22
K, and o = 2.556 A, resulting in A* = 2.677 for *“He and A* = 3.084 for *He. Table I
contains the values of Eg = E,/e obtained in this manner, and Fig. 2 shows a plot
of E% as a function of »*. To facilitate the use of the calculated data, values of Eg
were fitted by a least squares method to the function

E3 = A(x*) " exp (nv*). (20)

Table 11 contains the values of the parameters obtained. A function of this form results
iny = —(d In 6%/d In v*) being y =I—nv*.

Since the measurements of 7 were made as a function of pressure and not volume,
values of v coresponding to the pressure and temperature of the measured n were
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TABLE 1
CALCULATED ZERO POINT ENERGY OF *He AND “He
c* E3
SHe “He ‘Hes
20 2.065 2053
2.1 1.793
2.2 1.563 1.552
2.3 1.367
2.4 1.199 1.190
2.5 1.519 1.055
2.6 1.373 0.932
27 1.247 0.826
28 1.139 0.734
29 1.045
3.0 0.966
3.1 0.897
32 0.839
33 0.789
34 0.747
3.5 0.711
3s 0.681
3.7 0.656
3.8 0.634
3.9 0.617
4.0 0.602

“Values obtained by Hurst and Levelt (Ref. 9).

TABLE 11
VALUES OF THE PARAMETERS IN EQUATION (20)

Parameter 3He “He

A 15.597 21.098
1 5.699 1.804
n 1.159 —0.537

necessary. The density data of Sherman and Edeskuty'® were used for *He, and the
density data of Elwell and Mever'? for “He. Table III shows a comparison of the
experimental and calculated values of 5 for *He, while Table IV shows the same com-
parison for *He. The values of r used are included. In neither case is the agreement
good. At constant pressure the calculated 77 generally increases with increasing temper-
ature, following the experimental behavior. At constant temperature, the calculated
n increases with increasing pressure at the higher temperatures, but decreases with
increasing pressure at the lower temperatures. Thus, the calculations indicate that
(¢nfé P); changes from positive to negative as the temperature decreases in this range.
This is contrary to the experimental behavior which shows a positive (67/6P) over the
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TABLE II1

COMPARISON OF EXPERIMENTAL AND CALCULATED THERMAL
CONDUCTIVITIES OF LIQUID 3He

T(K) P (arm) o {cc/mole) 1% 10~* Geattsfcrn K)
Exp. Cale.
1.50 4 33.30 1.10 ~.58 -
10 30.27 1.13 9.48
16 28.45 1.14 0.38
22 27.36 1.17 0.31
28 26.16 1.18 0.22
34 25.32 1.21 0.16
2.00 4 33.80 1.33 0.86
10 30.25 1.37 0.85
16 28.59 1.44 0.79
22 27.23 1.50 0.70
28 26.23 1.53 0.61
34 2541 1.57 0.52
2.53 4 34.60 1.53 1.03
10 30.84 1.60 1.13
16 28.80 1.72 1.14
22 27.42 1.78 1.11
28 26.36 1.85 1.05
34 25.51 1.91 0.97
3.00 q 35.85 1.69 i1.07
16 31.34 1.82 1.27
16 29.14 1.96 1.36
22 27.64 2.04 1.38
28 26.53 2.10 1.38
34 25.64 2.18 1.34
3.50 4 3794 1.80 1.05
10 32.07 2.01 1.34
16 29.56 2.15 1.49
22 27.94 2.24 1.59
28 26.75 233 1.64
34 25.82 2.40 1.65
3.95 4 40.76 1.88 0.98
10 33.00 2.10 1.34
16 30.08 2.29 1.55
22 28.34 2.42 1.70
28 27.05 2.55 1.79
34 26.07 2.64 1.85

entire range, although it does decrease with decreasing temperature. The calculated
values are all below the experimental values.

Although the agreement between the calculated and experimental values of n
is only fair, it shouid be pointed out that the model has no constacts which can be
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TABLE IV

COMPARISON OF EXPERIIMENTAL AND CA

NSNS IVAE A RANEMINILN NSA AsMAE K aAnsivAALLAS RS P L $ T4 W 94 - a

CONDUCTIVITIES OF LIQUID “He

(K) P (arm) t (cc/mcle) 7% 10~ * (wratts/cm K)
Exp. Cale.
2.42 1 27.15 1.50 1.12
10 24.81 1.72 1.12
18 23.54 1.86 1.03
26 22.63 1.96 0.92
34 21.97 1,99 0.82
262 1 27.40 1.60 1.17
10 24.95 1.82 1.24
i8 23.63 1.99 1.19
26 22.69 209 1.10
34 2202 215 1.01
2.82 1 27.66 1.68 1.21
10 25.06 1.96 1.35
i8 23.73 2.11 1.33
26 22.77 2.21 1.27
34 2209 2.30 1.19
3.01 1 27.93 1.73 1.22
10 25.19 203 143
18 23.80 2.18 1.45
26 22.85 2.32 1.41
34 22.18 2.40 1.35
3.60 1 29.28 1.89 1.16
10 25.72 2.26 1.57
18 24.18 2.46 1.72
26 23.12 2.60 1.77
34 22.37 275 1.77
3.95 1 30.55 2.04 1.03
10 26.13 237 1.59
18 24.43 2.61 1.81
26 23.32 2.80 1.91
34 22.54 291 1.96

adjusted to bring the calculations into line with the experimental results. It may be
possible to use 8 as an adjustable parameter to correlate the measurements of 77 of
liquid “He and 3He. That procedure was not attempted here, since the purpose of
this work was to outline the model for liquid thermal conductivities and to compare
it with existing experimental data.
REFERENCES

1 J. F. Kerrisk, J. D. Rogers, and E. F. Hammel, in K. D. Timmerbaus (Ed.), Adcances in Cryogenic

Engineering, Vol. 9, Plenum Press, New York, 1964, p. 188.
2 J. K. Horrocks and E. McLaughlin, Trans. Faraday Soc., 58 {(1960) 206.



93

(]

. K. Horrocks and E. McLaughlin, Traas. Faraday Soc., 59 (1963) 1709.

. Kamal and E. McLaughlin, Trans. Faraday Soc., 60 (1964) 809.

. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. Ser. A, 163 (1937) 53.

. V. Sengers, Int. J. Hear Mass Transfer, 8 (1565) 1103.

Kittell, Introduction to Solid State Physics, John Wiley and Sons, Inc., New York, 1956, p. 122,
. M. H. Levelt and R. P. Hurst, J. Chem. Phys., 32 (1960) 96.

. P. Hurst and J. M. H. Levelt, J. Chem. Phys., 34 (1961) 54.

. D. Hooton, Phil. Mag., 46 (1955) 485.

11 T. S. Ree, T. Ree, and H. Eyring, J. Phys. Chem., 68 (1964) 3262.

12 J. A. Barker, Lattice Theories of the Liquid State, Pergamon Press, New York, 1963.

13 J. de Boer, Proc. Roy. Soc. Ser. A, 215 (1952) 4.

14 J. de Boer, Physica, 14 (1948) 139.

15 A. C. Anderson, J. I. Connolly, O. E. Vilckes, and J. C. Wheatley, Phys. Rec., 147 (1966) 86.
16 J. F. Kerrisk and W. E. Keller, Pays. Rer., 177 (1969) 341.

17 D. P. Needham and H. Ziebland, Int. J. Heat Mass Transfer, 8 (1965) 1387.

18 R. H. Sherman and F. J. Edeskuty, Ann. Phys. (Neww York), 9 (1960) 522,

19 D. L. Elwell and H. Meyer, Phys. Rec., 164 (1967) 245.

OV AW
N"‘Q“‘""—'

-t
oy



